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Abstract 
 

This paper, to solve the MINLP, presents an 
improved algorithm of PSO. The main characteristics 
of the improved algorithm includes: the introduction of 
backup-particles and the proposal of particles 
substitution strategy which improves the learning 
ability and updating velocity of particles. It proved by 
the classical values experiments that the improved 
algorithm possesses the features of accuracy and quick 
convergence at the same time.  
Keywords: MINLP( Mixed-Integer Nonlinear 
Programs)  PSO( Particle Swarm Optimization) 
Evolutionary Computation(EC) 
 
 
1  Introduction 
 

MINLP model refers to a kind of complicated 
nonlinear program problems which contain both the 
integer variables and continuous variables. 

The general form of MINLP is: 
Minimize f(X,Y), Subject to:  

g (X,Y)<=0,  i =1,2,3,…,j;   h  (X,Y)=0, i 
=j+1,j+2,…,k; 

X ≤X≤X , Y ≤Y≤Y . there in：

X∈R , Y ∈N , p + q=n. R  is P-dimensional 

real number space, N is Q-dimensional integral 
number space. f(x, y) is the nonlinear objective 

function, and g (X,Y), h (X,Y) are the nonlinear 
constrained functions . MINLP is a NP-complete 
problem which has been seen as a very complicated 
problem until now. But the solution of MINLP is 
possible with the development of computer technology. 
In references, to solve MINLP, there are generally 
three methods: branch—and—bound(B&B), 
Generalized Benders Decomposition(GBD) and 
Outside Approximation(OA). Aiming to deal with the 
limitations of the above three algorithms, this paper 
provides an improvement of PSO with the addition of 
substitution function and the enhancement of learning 
ability of particles, thus making the improved 
algorithm deal with MINLP with higher efficiency and 
better results.  
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2 PSO( Particle Swarm Optimization) 
 

PSO, proposed by Eberhart and Kennedy in 1995, 
is A Global Optimization Evolutionary Algorithm, 
originating from the imitation of food-looking of birds.  

The brief description of PSO is: A swarm of 
particles is initialized at random in a certain space in 
which the places of particles stand for possible 
solutions and every particle is flying at a certain 
velocity. By flying many times, that is, iteration, the 
swarm of particles gradually approaches to the optimal 
place, thus finding the optimal solution .In each 
iteration, particles update themselves by two 
extremums: One is the optimal solution found by a 
particle itself, called pBest, the other is the current 
optimal solution found by the swarm, called gBest.  
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Particles update their velocities and places on the 
basis of these two extremums:             

  V=ϖ *V + C1* rand() * (pBest-X) + C2* 
rand()*(gBest-X)   (1) 

     
 X = X + V  (2) 

V is the velocity of a particle, X is the place of the 
current particle, pBest and gBest are defined in the 

above, rand() is any random value in (0, 1), C1 and C2 
are learning genes. Usually C1=C2=2.  

   Chart 1 is the flowchart of PSO. 

 
Chart 1. PSO Algorithm 

 
Chart 2. A Improved PSO Algorithm 

 
3 The Improved PSO Algorithm 
 

There are several drawbacks with PSO when 
dealing with MINLP: The one is : easily falling into 
the local optimal solution ,The other is : inefficiency. 
So, this paper proposes the particles substitution 
strategy which improves particles velocity updating 
strategy to enhance their learning abilities and the 
flexibility of searching in global solution space. Chart 
2 is the flowchart of the improved PSO algorithm. 

 



3.1 Particles Substitution Strategy 

The particles falling into a local optimal solution 
can hardly jump out of it by general moving strategies. 
So they have to be substituted by new particles, that is, 
substituting the particles falling into the local optimal 
solution with particles in the legitimate solution space. 
However, the generation of new particles and 
legitimate solutions often need a high cost, especially 
when the constrained conditions are harsh and when 
there are a large number of variables of the constrained 
inequality. Under the consideration of this, the paper 
suggests we establish a dynamic backup-particle 
reserve in which the particles move randomly in 
legitimate solution space. And when needed, particles 
can be chosen from the backup-particles to replace the 
particles falling into the local optimal solution to 
search the global optimal solution. In this case, on one 
hand the cost to generate basic legitimate solution can 
be reduced, on the other hand, the backup-particles or 
their tracks in legitimate solution space are well 
distributed so that the global search of the algorithm is 
ensured. 

3.2 The substitution of particles is shown in the 
following chart 3 

  
Chart 3. A substitution Strategy  

 
3.3 The Particles Velocity Updating Strategy 
 

 Different from the traditional particles velocity 
updating strategy of PSO, the improved algorithm 
divides velocity into two respects: direction and step; 
and respectively establishes the relevant alterative 
strategy and testing methods. Within these strategies, 
the direction and step, as well as whether there is need 
to adopt a new testing method to generate a new value 
are determined mainly on the basis of the particles’ 
experience, the times of successes and failures and the 
obtained results and so on. 

 
3.4 The pseudocode of the improved PSO 
algorithm is as follows 
 

Initialize backup-particles; 
Initialize on-duty-particles; 

While (not terminated) 
Do { 

For each on-duty-particle { 
Calculate fitness value 

If the fitness value is better than the best 
fitness value (p-best) in history 

Set current value as the new p-best 
Else If (without hope) 

for each backup-particle       // the maintenance and 
updating of backup-particles 

{   if( valid(present[]+v[]) )    
 present[]=present + v[];      
 else while (not valid(present[]+v[]) )  

do{ v[]=rand()% L[];}    // generate a motional 
vector of short step in random      

 if(used times > N)    // N is an adjustable constant        
while (not valid(present[]))  

do {present[]=rand();}    

} 

} 

Choose the particle with the best fitness value of all the 
particles as g-best 

For each particle { 
Calculate particle velocity according equation (a) 
Update particle position according equation (b) 

} 
} 

 
4 The experimental results and 
comparative analysis 
 

We select three classical testing problems to do 
values experiments on the sake of testing the efficiency, 
velocity and accuracy of the new PSO. The condition 
for experiments is: PII-366 CPU , 256M memory and 
Windows XP operating systems. 

Question1.  
Minimize f (X,Y) 

=0.6224*(0.0625*y1)*x1*x2+1.7781*(0.0625*y2)* 
(x1)2+3.1661* (0.0625*y1)2*x2 +19.84* (0.0625*y1) 2 
*x1; 

 Constrained conditions: 
g1 (X,Y) =0.0193* x1- 0.0625*y1 ≤ 0 ; 
g2 (X,Y) =0.00954*x1 -0.0625*y2 ≤ 0 ; 

g3 (X,Y) =750*1728-π* (x1) 2 *x2 -4/ 3*π*(x1) 3 ≤ 0 ; 



g4(X,Y) =x2 -2 40≤ 0 . 
this testing problem is proposed by Reference[2] 

and has been dealt with by Reference[3, 4, 5, 6] 
Question2.  
Min f(x1,x2,x3,y1,y2,y3,y4)=(y1-1)2+(y2-1) 2+(y3-

1) 2-ln(y4+1)+(x1-1) 2+(x2-2) 2+(x3-3) 2.  
Constrained conditions : 

y1+y2+y3+x1+x2+x3 ≤ 5; 
(y3) 2 + (x1) 2 + (x2) 2+ (x3) 2 ≤ 5.5; 

y1 + x1 ≤ 1.2; 
y2 + x2 ≤ 1.8; 

y3 + x3 ≤2.5; y4 + x1 ≤ 1.2; 
(y2) 2 + (x2) 2 ≤ 1.64; 
(y3) 2 + (x3) 2 ≤ 4.25; 
(y2) 2 + (x3) 2≤ 4.64; 

x1, x2, x3 ≥0; 
y1, y2, y3, y4 ∈{0, 1}; 

This problem has been dealt with by Reference [7, 
8, 9, 10, 11] 

Question3.  
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The above problem is called BUMP which is fist 
proposed by Keane[12] in optimal structure design in 
1994. Because BUMP possesses three superior 
features(super nonlinearity, super multi-peak, super 
high-dimensional), it has become an internationally 
universal testing problem for measuring algorithm 
optimization. 

The paper uncovers the results of ten experiments 
by the improved PSO for the above problems. The 
numbers of on-duty-particles and backup-particles are 
all set as 30, and the results are as follows: 

 
Table 1 Experiment Result of Question1 

 

 

Table 2 Experiment Result of Question2 

 
 

Table 3 Experiment Result of Question3 

 
 

In Question1, this algorithm calculated the current 
optimal solution with a shorter time and more accuracy. 

In Question2, the solution is more accurate than 
current solutions of other algorithms.  

In Question3, this algorithm calculated the optimal 
solution in a shorter time, in the mean while, it makes 
clear some other points also take the same optimal 
solution (0.36497974587066). The solutions of these 
questions are: 
(1.60086004652328,0.46849805155024);(1.60086040
960895;0.46849806235336); 
(1.60086043325990;0.46849805543182);(1.60086044
189444;0.46849805290488); 
(1.60086046865024;0.46849804507470);(1.60086046
892781;0.46849804499346); and so on. 

 
5 Conclusion  
 

The paper provides an improved PSO basing on the 
analysis of PSO’s basic principle of work and presents 
the application of the improved PSO to MINLP. 
Experiments show that the improved PSO algorithm is 
both faster in convergence and more accurate in 
solution. The use of the improved PSO is convenient 
because only the fitness function, the expressions of 
constrained conditions and the limits of its variables 
are asked to input for different problems. In all, this 
algorithm is a very effective one to deal with MINLP 
and other optimization problems.  
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